On Parlett's matrix norm inequality for the Cholesky decomposition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Parlett's matrix norm inequality for the Cholesky decomposition

Dedicated to our friends Beresford and Velvel on the occasion of their sixtieth birthdays. ABSTRACT We show that a certain matrix norm ratio studied by Parlett has a supremum that is O(p n) when the chosen norm is the Frobenius norm, while it is O(log n) for the 2-norm. This ratio arises in Parlett's analysis of the Cholesky decomposition of an n by n matrix.

متن کامل

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on s...

متن کامل

Cholesky Decomposition Rectification for Non-negative Matrix Factorization

We propose a method based on Cholesky decomposition for Non-negative Matrix Factorization (NMF). NMF enables to learn local representation due to its non-negative constraint. However, when utilizing NMF as a representation leaning method, the issues due to the non-orthogonality of the learned representation has not been dealt with. Since NMF learns both feature vectors and data vectors in the f...

متن کامل

Low Rank Updates for the Cholesky Decomposition

Usage of the Sherman-Morrison-Woodbury formula to update linear systems after low rank modifications of the system matrix is widespread in machine learning. However, it is well known that this formula can lead to serious instabilities in the presence of roundoff error. If the system matrix is symmetric positive definite, it is almost always possible to use a representation based on the Cholesky...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Linear Algebra with Applications

سال: 1995

ISSN: 1070-5325,1099-1506

DOI: 10.1002/nla.1680020306